Муниципальное бюджетное общеобразовательное учреждение гимназия г. Советский

Муниципальное бюджетное общеобразовательное учреждение гимназия г. Советский

Рабочая программа «Согласовано» «Утверждено» приказом приказом директора гимназии от заместителя директора)

Протокол № 1 от «З1» августа 2023 г. №521

РАБОЧАЯ ПРОГРАММА

курса внеурочной деятельности

«Основы управления беспилотными летательными аппаратами» (научно-техническая направленность)

для 7-х классов (основное общее образование)

Количество часов: 17

Составитель: Гарагуль Д.А.

учитель технологии

МБОУ гимназия г. Советский

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Введение

В настоящее время рынок БПЛА (беспилотных летательных аппаратов) — стал очень перспективной и быстроразвивающейся отраслью, к 2019 году рынок БПЛА уже оценивался в 127 млрд долларов США¹ и продолжает активно развиваться. Очень скоро БПЛА станут неотъемлемой частью повседневной жизни: мы будем использовать БПЛА не только в СМИ и развлекательной сферах, но и в инфраструктуре, страховании, сельском хозяйстве и обеспечении безопасности, появятся новые профессии, связанные с ростом рынка.

Направленность программы. Настоящая общеобразовательная общеразвивающая программа дополнительного образования детей имеет *научно-техническую направленность*. Предполагает дополнительное образование детей в области конструирования, моделирования и беспилотной авиации, программа также направлена на формирование у детей знаний и навыков, необходимых для работы с беспилотными авиационными системами (БАС).

Программа позволяет создавать благоприятные условия для развития технических способностей школьников.

Настоящая программа соответствует общекультурному уровню освоения и предполагает удовлетворение познавательного интереса обучающегося, расширение его информированности в области беспилотных летательных аппаратов и систем, а также обогащение навыками общения и приобретение умений совместной деятельности в освоении программы.

Новизна настоящей образовательной программы заключается в том, что она интегрирует в себе достижения современных и инновационных направлений в малой беспилотной авиации.

Актуальность программы Современные тенденции развития роботизированных комплексов в авиации получили реализацию в виде беспилотных авиационных систем (БАС).

В настоящее время наблюдается лавинообразный рост интереса к беспилотной авиации как инновационному направлению развития современной техники, хотя история развития этого направления началась уже более 100 лет тому назад. Развитие современных и перспективных технологий позволяет сегодня беспилотным летательным аппаратам успешно выполнять такие функции, которые в прошлом были им недоступны или выполнялись

_

¹ По информации PowerwaterhouseCoopers

другими силами и средствами.

Благодаря росту возможностей и повышению доступности дронов, потенциал использования их в разных сферах экономики стремительно растёт. Это создало необходимость в новой профессии: оператор БАС. Стратегическая задача курса состоит в подготовке специалистов по конструированию, программированию и эксплуатации БАС.

Настоящая образовательная программа позволяет не только обучить ребенка моделировать и конструировать БПЛА, но и подготовить обучающихся к планированию и организации работы над разноуровневыми техническими проектами и в дальнейшем осуществить осознанный выбор вида деятельности в техническом творчестве.

Педагогическая целесообразность настоящей программы заключается в том, что после ее освоения обучающиеся получат знания и умения, которые позволят им понять основы устройства беспилотного летательного аппарата, принципы работы всех его систем и их взаимодействия, а также управление БПЛА. Использование различных инструментов развития soft-skills у детей (игропрактика, командная работа) в сочетании с развитием у них hard-компетенций (workshop, tutorial) позволит сформировать у ребенка целостную систему знаний, умений и навыков.

2. Цели и задачи программы.

Целью программы является формирование у обучающихся устойчивых soft-skills и hard-skills² по следующим направлениям: проектная деятельность, теория решения изобретательских задач, работа в команде, аэродинамика и конструирование беспилотных летательных аппаратов, основы радиоэлектроники и схемотехники, программирование микроконтроллеров, лётная эксплуатация БАС (беспилотных авиационных систем). Программа направлена на развитие в ребенке интереса к проектной, конструкторской и предпринимательской деятельности, значительно расширяющей кругозор и образованность ребенка.

Задачи:

~ ~

Образовательные задачи:

- сформировать у обучающихся устойчивые знания в области моделирования и конструирования БАС;
- развить у обучающихся технологические навыки конструирования;
- сформировать у обучающихся навыки современного организационноэкономического мышления, обеспечивающих социальную адаптацию в условиях рыночных отношений.

 $^{^2}$ «soft-skills» — теоретические знания и когнитивных приемы, «hard-skills» — умения «работать руками».

Развивающие задачи:

- поддержать самостоятельность в учебно-познавательной деятельности;
- развить способность к самореализации и целеустремлённости;
- сформировать техническое мышление и творческий подход к работе;
- развить навыки научно-исследовательской, инженерно-конструкторской и проектной деятельности;
- расширить ассоциативные возможности мышления.

Воспитательные задачи:

- сформировать коммуникативную культуру, внимание, уважение к людям;
- воспитать трудолюбие, развить трудовые умения и навыки, расширить политехнический кругозор и умение планировать работу по реализации замысла, предвидение результата и его достижение;
- сформировать способности к продуктивному общению и сотрудничеству со сверстниками и взрослыми в процессе творческой деятельности.

Отличительные особенности программы

К основным отличительным особенностям настоящей программы можно отнести следующие пункты:

- кейсовая система обучения;
- •проектная деятельность;
- направленность на soft-skills;
- •игропрактика;
- среда для развития разных ролей в команде;
- сообщество практиков (возможность общаться с детьми из других квантумов, которые преуспели в практике своего направления);
 - направленность на развитие системного мышления;
 - рефлексия.

Возраст детей Программа ориентирована на дополнительное образование учащихся среднего школьного возраста (13 – 14 лет). Особенностью детей этого возраста является то, что в этот период происходит главное в развитии мышления – овладение подростком процессом образования понятий, который ведет к высшей форме интеллектуальной деятельности, новым способам Функция образования понятий В поведения. лежит основе интеллектуальных изменений в этом возрасте. Для возраста 13 – 14 лет характерно господство детского сообщества над взрослым. Здесь складывается новая социальная ситуация развития. Идеальная форма – то, что ребенок осваивает в этом возрасте, с чем он реально взаимодействует, – это область моральных норм, на основе которых строятся социальные взаимоотношения. Общение со своими сверстниками – ведущий тип деятельности в этом возрасте.

Именно здесь осваиваются нормы социального поведения, нормы морали, здесь устанавливаются отношения равенства и уважения друг к другу.

Количество часов: 17 часов

Формы обучения Обучение проводится по очной форме

Формы организации деятельности Форма организации занятий: групповая, индивидуальная, индивидуально-групповая и фронтальная. Программой предусмотрено проведение комбинированных занятий: занятия состоят из теоретической и практической частей, причём большее количество времени занимает именно практическая часть.

При проведении занятий используются следующие формы работы:

- Лекция-диалог с использованием метода «перевернутый класс»

 когда обучающимся предлагается к следующему занятию ознакомится с материалами (в т.ч. найденными самостоятельно) на определенную тему для обсуждения в формате диалога на предстоящем занятии;
- Workshop и Tutorial (практическое занятие hard skills), что по сути является разновидностями мастер-классов, где обучающимся предлагается выполнить определенную работу, результатом которой является некоторый продукт (физический или виртуальный результат). Близкий аналог фронтальная форма работы, когда обучающиеся синхронно работают под контролем педагога;
- конференции внутриквантумные и межквантумные, на которых обучающиеся делятся опытом друг с другом и рассказывают о собственных достижениях;
- самостоятельная работа, когда обучающиеся выполняют индивидуальные задания в течение части занятия или нескольких занятий.
- метод кейсов (case-study), "мозговой штурм" (Brainstorming), метод задач (Problem-Based Learning) и метод проектов (Project-Based Learning). Пример: кейс это конкретная задача («случай» саѕе, англ.), которую требуется решить, для этого в режиме «мозгового штурма» предлагаются варианты решения, после этого варианты обсуждаются и выбирается один или несколько путей решения, после чего для решения кейса формируются более мелкие задачи, которые объединяются в проект и реализуются с применением метода командообразования.

Режим занятий Занятия по дополнительной образовательной программе проводятся 1 раз в неделю.

Год обучения	Возраст	Кол-во недель		Объем уч програм	
			Всего	Лекции	Практика
1	13 – 14	34	17	6	11

Данная образовательная программа является **вводным модулем** и изучается в течение первой половины первого учебного года (34 недель, 0.5 часа в неделю). Обучающиеся выполняют 11 практических занятий, Вводный модуль настоящей программы 13-14 лет, различаясь только соотношением практических и теоретических занятий; чем старше обучающиеся, тем больше начинает практическая часть преобладать над теоретической.

Объем программы и виды учебной работы

Форма проведения занятий «лекции» подразумевает такую форму занятий, в процессе которых происходит развитие т.наз. soft-skills (теоретических знаний и когнитивных приемов) обучающихся, а именно:

- технология изобретательской разминки и логика ТРИЗ;
- противоречие как основа изобретения;
- идеальный конечный результат;
- алгоритм проектирования технической системы;
- командообразование;
- работа в команде;
- личная ответственность и тайм-менеджмент;
- проектная деятельность;
- продуктовое мышление;
- универсальная пирамида прогресса;
- планирование и постановка собственного эксперимента;

Форма проведения занятий «практические занятия» подразумевает такую форму занятий, в процессе которых происходит развитие т.наз. hard-skills (навыков и умений) обучающихся, а именно:

- работа с простым инструментом (отвертка, пассатижи);
- работа с оборудованием hi-tech-цеха (пайка, лазерная резка);

- работа с программным обеспечением (настройка летного контроллера квадрокоптера, проектирование рамы квадрокоптера);
- управление квадрокоптером.

Материально-техническое обеспечение см. в приложении 1.

Правила выбора проекта и примерные темы проектов см. в приложении 2. Примеры кейсов см. в приложении 3.

2. СОДЕРЖАНИЕ ДОПОЛНИТЕЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

№ п/п	Наименование темы	Содержание темы
1	2	3
Блок 1.	 Теория мультироторных систем. Основы управления. Полёты на симуляторе. Вводная лекция о содержании курса. Принципы управления и строение мультикоптеров. Техника безопасности полётов Основы электричества. Литийполимерные аккумуляторы. Практическое занятия с литийполимерными аккумуляторами (зарядка/разрядка/балансировка/хранение) Технология пайки. Техника безопасности. Обучение пайке. Полёты на симуляторе. 	Устройство мультироторных систем. Основы конструкции мультироторных систем. Принципы управления мультироторными системами. Аппаратура радиоуправления: принцип действия, общее устройство. Техника безопасности при работе с мультироторными системами. Электронные компоненты мультироторных систем: принципы работы, общее устройство. Литий-полимерные аккумуляторы и их зарядные устройства: устройство, принцип действия, методы зарядки/разрядки/хранения/ балансировки аккумуляторов, безопасная работа с оборудованием. Пайка электронных компонентов: принципы пайки, обучение пайке, пайка электронных компонентов мультироторных систем. Полёты на симуляторе: обучение полётам на компьютере, проведение учебных полётов на симуляторе.

Блок 2. Сборка и настройка квадрокоптера. Учебные полёты.

- 1. Управление полётом мультикоптера. Принцип функционирования полётного контроллера и аппаратуры управления.
- 2. Бесколлекторные двигатели и регуляторы их хода. Платы разводки питания.
- 3. Сборка рамы квадрокоптера.
- 4. Пайка ESC, BEC и силовой части.
- 5. Основы настройки полётного контроллера с помощью компьютера. Настройка Аппаратуры управления.
- 6. Настройки полётного контроллера.
- 7. Инструктаж по технике безопасности полетов.
- 8. Первые учебные полёты:

 «взлёт/посадка», «удержание на заданной высоте», перемещения «вперед-назад», «влево-вправо». Разбор

Полётный контроллер: устройство полётного контроллера, принципы его функционирования, настройка контроллера с помощью компьютера, знакомство с программным обеспечением для настройки контроллера.

Бесколлекторные двигатели и их регуляторы хода: устройство, принципы их функционирования, пайка двигателей и регуляторов.

Платы разводки питания: общее устройство, характеристики, пайка регуляторов и силовых проводов к платам разводки питания.

Инструктаж перед первыми учебными полётами. Проведение учебных полётов в зале, выполнение заданий: «взлёт/посадка», «удержание на заданной высоте», «вперед-назад», «влево-вправо», «точная посадка на удаленную точку»,

«коробочка», «челнок», «восьмерка», «змейка», «облет по кругу».

Разбор аварийных ситуаций.

	аварийных ситуаций. 9. Выполнение полётов: «точная посадка на удаленную точку», «коробочка», «челнок», «восьмерка», «змейка»,	
Блок 3.	 Настройка, установка FPV – оборудования. Основы видеотрансляции. Применяемое оборудование, его настройка. Установка и подключение радиоприёмника и видеооборудования. Пилотирование с использованием FPV - оборудования. 	Основы видеотрансляции: принципы передачи видеосигнала, устройство и характеристики применяемого оборудования. Установка, подключение и настройка видеооборудования на мультироторные системы. Пилотирование с использованием FPV-оборудования.

3. УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

	3. 3 TEDITO-TEMATH IEV		часов			
			В том числе		Форма контроля	Hi-tech
Разделы	Наименование темы	Всего часов	Теория	Практика		есh цех
1	2	3	4	5	6	7
Блок 1.	Теория мультироторных систем. Основы управления. Полёты на симуляторе.	13	6	7		
	1. Вводная лекция о содержании курса.		1			
	2. Принципы управления и строение мультикоптеров.		1	1		
	3. Основы техники безопасности полётов		1			
	4. Основы электричества. Литий- полимерные аккумуляторы.		1			

	5. Практическое занятия с литий- полимерными аккумуляторами (зарядка/разрядка/балансировка/хранение)			1	Практическая работа с зарядными устройствами.	
	6. Технология пайки. Техника безопасности.		1	1	Пайка проводов.	1
	7. Обучение пайке.		1	1		
	8. Полёты на симуляторе.		0	3	Полёты на симуляторе.	
Блок 2.	Сборка и настройка квадрокоптера. Учебные полёты.	2	0	3	Практическая работа	
	1.Обучение навыкам пилотирования квадрокоптера на примере игрушки заводской сборки			2	Учебные полёты	
	2. Управление полётом мультикоптера. Принцип функционирования полётного контроллера и аппаратуры управления.			1	Сборка и настройка квадрокоптера	
Блок 3.	Настройка, установка FPV – оборудования.	2		1	Практическая работа	
	1. Основы видеотрансляции. Применяемое оборудование, его настройка.			1	Установка видеооборудования.	

2. Установка и подключение радиоприёмника и видеооборудования.		1	
Итого:	17		

4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

Предполагаемые результаты освоения полного курса обучения по дополнительной общеобразовательной общеразвивающей программе «Беспилотные летательные аппараты» сформулированы исходя из требований к знаниям, умениям, навыкам, которые учащиеся должны приобрести в процессе обучения на всех годах, с учетом целей и поставленных задач.

Личностные результаты освоения дополнительной общеобразовательной общеразвивающей программы

- уважительное отношение к культуре своего народа;
- ответственное отношение к обучению;
- готовность и способность к саморазвитию и самообразованию на основе мотивации к обучению и познанию в области научных технологий;
- бережное отношение к духовным ценностям;
- нравственное сознание, чувство, поведение на основе сознательного усвоения общечеловеческих нравственных ценностей;
- эстетические потребности, ценности и чувства.

Метапредметные результаты освоения дополнительной общеобразовательной общеразвивающей программы

Учащиеся научатся на доступном уровне:

- осваивать способы решения проблем творческого и научного характера и определения наиболее эффективных способов достижения результата;
- организовывать сотрудничество с педагогом и сверстниками, работать в группе;
- владеть основами самоконтроля, самооценки;
- продуктивно общаться и взаимодействовать;
- развивать художественные, психомоторные, коммуникативные способности;
- развивать наблюдательность, ассоциативное мышление, эстетический и художественный вкус и творческое воображение.

Предметные результаты освоения дополнительной общеобразовательной общеразвивающей программы

Учащиеся познакомятся:

- с технологией изготовления квадракоптера из бросового материала,
- со схемами изготовления квадракоптера,

- с историей возникновения квадракоптера
- с правилами ТБ, со схемами изготовления.

Учащиеся научатся:

- подбирать корпус, соответствующие цепи, подбирать цвета для изделий;
- читать схемы,
- самостоятельно собирать поделки по схемам, выбирать изделия, которые сами дети будут выполнять.
- обращаться с колющими и режущими инструментами, клеящими составами,

Учащиеся получат возможность приобрести:

- первоначальные представления о влиянии научного творчества на развития эстетического вкуса, воображения;
- навыки исполнения поделок из бумаги, картона, пластмасса!

5.УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

Аппаратное и техническое обеспечение:

- Рабочее место обучающегося:
 ноутбук: производительность процессора (по тесту PassMark CPU BenchMark http://www.cpubenchmark.net/): не менее 2000 единиц; объём оперативной памяти: не менее 4 Гб; объём накопителя SSD/eMMC: не менее 128 Гб (или соответствующий по характеристикам персональный компьютер с монитором, клавиатурой и колонками);
 мышь.
- Рабочее место наставника:
 ноутбук: процессор Intel Core i5-4590/AMD FX 8350 аналогичная или более новая модель, графический процессор NVIDIA GeForce GTX 970, AMD Radeon R9 290 аналогичная или более новая модель, объём оперативной памяти: не менее 4 Гб, видеовыход HDMI 1.4, DisplayPort 1.2 или более новая модель (или соответствующий по характеристикам персональный компьютер с монитором, клавиатурой и колонками); презентационное оборудование с возможностью подключения к компьютеру 1 комплект;

флипчарт с комплектом листов/маркерная доска, соответствующий набор письменных принадлежностей — 1 шт.; единая сеть Wi-Fi.

Программное обеспечение:

- офисное программное обеспечение;
- программное обеспечение для трёхмерного моделирования (Autodesk Fusion 360);
- графический редактор.

Расходные материалы:

```
бумага А4 для рисования и распечатки; бумага А3 для рисования; набор простых карандашей — по количеству обучающихся; набор чёрных шариковых ручек — по количеству обучающихся; клей ПВА — 2 шт.; клей-карандаш — по количеству обучающихся; скотч прозрачный/матовый — 2 шт.; скотч двусторонний — 2 шт.; картон/гофрокартон для макетирования — 1200*800 мм, по одному листу на двух обучающихся; нож макетный — по количеству обучающихся; лезвия для ножа сменные 18 мм — 2 шт.; ножницы — по количеству обучающихся; коврик для резки картона — по количеству обучающихся; РLА-пластик 1,75 REC нескольких
```

6. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

Организации образовательного процесса по дополнительной общеобразовательной общеразвивающей программе осуществляется *очнозаочно*, *в разновозрастных группах*. Комплексные занятия проходят по комбинированному типу, так как включает в себя повторение пройденного, объяснение нового, закрепление материала и подведение итогов.

На занятиях используются следующие формы и методы реализации программы.

Различные формы учебной работы (вид занятия) существенно повышают эффективность занятий и интерес обучающихся к ним. Программа предусматривает использование фронтальной, индивидуальной, групповой форм учебной работы учащихся. Фронтальная форма предполагает подачу учебного материала всему коллективу учащихся. Индивидуальная форма предполагает самостоятельную работу учащегося. При этом педагог оказывает учащемуся такую помощь, которая не подавляет его активности и способствует выработке навыков самостоятельной работы. В ходе групповой работы учащимся предоставляется возможность самостоятельно построить свою работу на основе принципа деятьльностного подхода. Групповые занятия позволяют выполнять сложные трудоемкие работы с наименьшими затратами материала и времени. При этом каждый обучающийся отрабатывает приемы на отдельном фрагменте, который является частью целого изделия.

Если говорить о формах учебных занятий, то основная масса учебного времени отводится на лекционно-практические занятия, где оптимально сочетаются теория и практические упражнения. Это обусловлено спецификой курса: чтобы эффективно овладеть навыками работы с бумагой и нитками, нужно вслед за теоретическим изучением приемов отработать их на практике. В чистом виде практические и лекционные занятия представлены в меньшей степени.

Помимо лекций и практических занятий программа предусматривает выставки, конкурсы профессионального мастерства, тестирование.

Выставки, ярмарки, конкурсы профессионального мастерства позволяют продемонстрировать результаты своих трудов за определенный период времени. Это позволяет учащимся критически оценивать свои работы, лучше понять их достоинства и недостатки, что является стимулом для дальнейшего творческого роста.

В программе предусмотрены контрольные часы после изучения каждого блока. На этих занятиях педагог проводит тесты, анкетирование, викторины, выставки с целью выявления качеств знаний, умений, навыков обучающихся.

Что касается *методов* работы, то программа предполагает сочетания репродуктивной и творческой деятельности. Во время знакомства с новым материалом деятельность носит репродуктивный характер, так как учащиеся воспроизводят знания и способы действий. Репродуктивная деятельность выражается в форме упражнений. Поиск нового стиля, новых элементов, создания работ по собственному эскизу является примером творческой деятельности.

Среди методов, определяемых по источнику информации, на занятиях используется объяснение (при знакомстве сосвойствами бумаги, пряжи, ниток, с терминами), инструктаж (объяснение правильных приемов работы, исправление и предупреждение ошибок), беседа (необходима для приобретения новых знаний и закрепления их путем устного обмена мнениями). Большое образовательно-воспитательное значение имеют беседы. Демонстрационные методы реализуют принцип наглядности обучения. Демонстрация присутствует практически на каждом занятии и сочетается со словесными методами.

Педагогу необходимо добиваться рационального выбора методов и оптимального их сочетания.

Воспитательная составляющая результатов:

Увлечение ребёнка избранным видом деятельности выражается в проявлении инициативы на занятии, систематическом участии в конкурсах и мероприятиях и результативности деятельности. Способность работать в коллективе и делиться личным опытом. Ответственно относится к результатам выполняемой работы.

Тематика занятий строится с учетом интересов учащихся, возможности их самовыражения. В ходе усвоения детьми содержания программы учитывается темп развития специальных умений и навыков, степень продвинутости по образовательному маршруту, уровень самостоятельности, умение работать в коллективе. Программа позволяет индивидуализировать сложные работы: более сильным детям будет интересна сложная конструкция, менее подготовленным, можно предложить работу проще. Все занятия устроены так, что каждое задание дает возможность ребенку проявлять свои творческие способности, не ограничивая свободу, воображение и фантазию.

Разнообразие профессиональных техник, художественных приемов на занятиях помогает раскрыть индивидуальные возможности и способности каждого, то есть проявить свое я, открыть себя, как личность. Главная особенность занятий - индивидуальный подход к каждому ребенку, научить их работать с разными материалами.

Занятия по программе проводятся на основе общих педагогических принципов:

- 1) Принцип доступности и последовательности предполагает построение учебного процесса от простого к сложному.
- 2) Учет возрастных особенностей содержание и методика работы должны быть ориентированы на детей конкретного возраста.
- **3)** Принцип наглядности предполагает широкое использование наглядных и дидактических пособий, технических средств обучения, делающих учебновоспитательный процесс более эффективным.
- 4) Принцип связи теории с практикой органичное сочетание в работе с детьми необходимых теоретических знаний и практических умений и навыков.
- 5) Принцип результативности в программе должно быть указано, что узнает и чему научится каждый ребенок.
- 6) Принцип актуальности предполагает максимальную приближенность содержания программы к реальным условиям жизни и деятельность детей.
- 7) Принцип деятельностного подхода любые знания приобретаются ребенком во время активной деятельности.
- **8)** Принцип культуросообразности основывается на ценностях региональной, национальной и мировой культуры, технологически реализуется по средствам культурно-средового подхода к организации деятельности в детском объединении.
- 9) Принцип гармонии простоты и красоты лежит в основе любого вида деятельности, одновременно является критерием творческой деятельности и результатом в процессе саморазвития творческих способностей.

Занятия строятся таким образом, чтобы учащиеся сознательно и активно овладевали ЗУНами, чтобы у них развивалась творческая активность и самостоятельность. Только с учетом этих принципов могут быть достигнуты высокие результаты в овладении обучающимися знаниями и практическими навыками.

Педагогические технологии, используемые по программе «Беспилотные летательные аппараты»

Технология дифференцируемого обучения способствует созданию оптимальных условий для развития интересов и способностей учащихся. Механизмом реализации являются методы индивидуального обучения.

- Технология личностно-ориентированного обучения это организация воспитательного процесса на основе глубокого уважения к личности ребёнка, учёте особенностей его индивидуального развития, отношения к нему как к сознательному, полноправному и ответственному участнику образовательного процесса. Это формирование целостной, свободной, раскрепощённой личности, осознающей своё достоинство и уважающей достоинство и свободу других людей.
- *Технология проблемного обучения* ставит своей целью развитие познавательной активности и творческой самостоятельности учащихся. Механизмом реализации является поисковые методы, приема поставки познавательных задач, поставив перед учащимися задачу, которую они выполняют, используя имеющиеся у них знания и умения.
- Технология развивающего обучения, при котором главной целью является создание условий для развития психологических особенностей: способностей, интересов, личностных качеств и отношении между людьми, при котором учитываются и используются закономерности развития, уровень и способности индивидуума. Под развивающим обучением понимается новый, активно-деятельный способ обучения, идущий на смену объяснительно-иллюстративному способу.
- Технологии сотрудничества реализуют равенство, партнерство в отношениях педагога и ребенка. Педагог и учащиеся совместно вырабатывают цели, содержание, дают оценки, находясь в состоянии сотрудничества, сотворчества.
- Здоровьесберегающие технологии создание комплексной стратегии улучшения здоровья учащихся, разработка системы мер по сохранению здоровья детей во время обучения и выработка знаний и навыков, которыми должен овладеть учащийся.
- *Информационные технологии*, использующие специальные технические информационные средства: компьютер, аудио-, видео-, теле- средства обучения.

Использование перечисленных технологий характеризует целостный образовательный процесс и является формой организации учебной и творческой деятельности, где каждый ребенок не только обеспечивается полной свободой творческой инициативы, но и нуждается в продуманной стратегии, отборе средств выражения, планировании деятельности.

Методика проведения занятия

Основные структурные элементы

- Вступительная часть. Показ готового изделия отдельно и в композиции
- Подготовительная часть. Разбор форм сложного изделия, определение его исходных форм.
- Основная часть. Поэтапное изготовление изделия по инструкции.
- Заключительная часть. Самостоятельная работа по образцу или завершение изделия, дополнение его самостоятельной фантазийной частью.

6.Список литературы

1. Список литературы, рекомендованный педагогам (коллегам) для освоения данного вида деятельности

$N_{\underline{0}}$	Наименовани
	Основная
1	Белинская Ю.С. Реализация типовых маневров четырехвинтового
	вертолета. Молодежный научно-технический вестник. МГТУ им. Н.Э.
	Баумана. Электрон. журн. 2013. №4. Режим доступа:
2	Гурьянов А. Е. Моделирование управления квадрокоптером
	Инженерный вестник. МГТУ им. Н.Э. Баумана. Электрон. журн. 2014
	№8 Режим лоступа: http://enghul.hmstu.ru/doc/723331.html (лата
3	Ефимов. Е. Программируем квадрокоптер на Arduino: Режим доступа:
	http://habrahabr.ru/post/227425/ (дата обращения 31.10.2016).
4	Институт транспорта и связи. Основы аэродинамики и динамики
	полета. Рига, 2010. Режим доступа:
5	http://www.reaa.ru/yabbfilesB/Attachments/Osnovy ajerodtnamiki Riga.pdf Канатников А.Н., Крищенко А.П., Ткачев С.Б. Допустимые
3	пространственные траекории беспилотного летательного аппарата в
	Наука и образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2012.
	№3. Режим лоступа: http://technomag.bmstu.ru/doc/367724.html (дата Мартынов А.К. Экспериментальная аэродинамика. М.: Государственное
·	издательство оборонной промышленности, 1950. 479 с. 13. Мирошник
	Дополнител
7	Редакция Tom's Hardware Guide. FPV- мультикоптеры: обзор
	TELIAKHUN TOHIS HAIUWATE GUIGE, I'F V - MVJIBTUKOHTEDBI, OO3OD
•	• • • • • • • • • • • • • • • • • • • •
	технологии и железа. 25 июня 2014. Режим доступа:
8	технологии и железа. 25 июня 2014. Режим доступа: http://www.thg.ru/consumer/obzor_fpv_multiconterov/print html Alderete T.S. "Simulator Aero Model Implementation" NASA Ames
8	технологии и железа. 25 июня 2014. Режим доступа: http://www.thg.ru/consumer/obzor_fpy_multiconteroy/print html Alderete T.S. "Simulator Aero Model Implementation" NASA Ames Research Center. Moffett Field. California. P. 21. Режим лоступа:
	технологии и железа. 25 июня 2014. Режим доступа: http://www.thg.ru/consumer/obzor_fpv_multiconterov/print.html Alderete T.S. "Simulator Aero Model Implementation" NASA Ames Research Center, Moffett Field, California, P. 21. Режим лоступа: Bouadi H., Tadjine M. Nonlinear Observer Design and Sliding Mode
8	технологии и железа. 25 июня 2014. Режим доступа: http://www.thg.ru/consumer/obzor_fpv_multiconterov/print html Alderete T.S. "Simulator Aero Model Implementation" NASA Ames Research Center. Moffett Field. California. P. 21. Режим лоступа: Bouadi H., Tadjine M. Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter. World Academy of Science, Engineering
8	технологии и железа. 25 июня 2014. Режим доступа: http://www.thg.ru/consumer/obzor_fpv_multiconterov/print.html Alderete T.S. "Simulator Aero Model Implementation" NASA Ames Research Center. Moffett Field. California. P. 21. Режим лоступа: Bouadi H., Tadjine M. Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter. World Academy of Science, Engineering and Technology, Vol. 25, 2007. Pp. 225-229. 11. Madani T., Benallegue A.
8	технологии и железа. 25 июня 2014. Режим доступа: http://www.thg.ru/consumer/obzor_fpv_multiconterov/print html Alderete T.S. "Simulator Aero Model Implementation" NASA Ames Research Center. Moffett Field. California. P. 21. Режим лоступа: Bouadi H., Tadjine M. Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter. World Academy of Science, Engineering
8	технологии и железа. 25 июня 2014. Режим доступа: http://www.thg.ru/consumer/obzor_fpv_multiconterov/print.html Alderete T.S. "Simulator Aero Model Implementation" NASA Ames Research Center. Moffett Field. California. P. 21. Режим лоступа: Bouadi H., Tadjine M. Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter. World Academy of Science, Engineering and Technology, Vol. 25, 2007. Pp. 225-229. 11. Madani T., Benallegue A.
8	технологии и железа. 25 июня 2014. Режим доступа: http://www.thg.ru/consumer/obzor_fnv_multiconterov/print html Alderete T.S. "Simulator Aero Model Implementation" NASA Ames Research Center. Moffett Field. California. P. 21. Режим лоступа: Bouadi H., Tadjine M. Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter. World Academy of Science, Engineering and Technology, Vol. 25, 2007. Pp. 225-229. 11. Madani T., Benallegue A. Dikmen I.C., Arisoy A., Temeltas H. Attitude control of a quadrotor. 4th
8	технологии и железа. 25 июня 2014. Режим доступа: http://www.thg.ru/consumer/obzor_fnv_multiconterov/print.html Alderete T.S. "Simulator Aero Model Implementation" NASA Ames Research Center. Moffett Field. California. P. 21. Режим лоступа: Bouadi H., Tadjine M. Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter. World Academy of Science, Engineering and Technology, Vol. 25, 2007. Pp. 225-229. 11. Madani T., Benallegue A. Dikmen I.C., Arisoy A., Temeltas H. Attitude control of a quadrotor. 4th International Conference on Recent Advances in Space Technologies, 2009.
8 9 10	технологии и железа. 25 июня 2014. Режим доступа: http://www.thg.ru/consumer/obzor_fnv_multiconterov/print html Alderete T.S. "Simulator Aero Model Implementation" NASA Ames Research Center. Moffett Field. California. P. 21. Режим лоступа: Bouadi H., Tadjine M. Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter. World Academy of Science, Engineering and Technology, Vol. 25, 2007. Pp. 225-229. 11. Madani T., Benallegue A. Dikmen I.C., Arisoy A., Temeltas H. Attitude control of a quadrotor. 4th International Conference on Recent Advances in Space Technologies, 2009. Pp. 722-727. 4. Luukkonen T. Modelling and Control of Quadcopter. School LIPO SAFETY AND MANAGEMENT: Режим доступа: http://aerobot.com.au/support/training/lino-safety (Лата обрашения
8 9 10	технологии и железа. 25 июня 2014. Режим доступа: http://www.thg.ru/consumer/obzor_fpv_multiconterov/print html Alderete T.S. "Simulator Aero Model Implementation" NASA Ames Research Center. Moffett Field. California. P. 21. Режим лоступа: Bouadi H., Tadjine M. Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter. World Academy of Science, Engineering and Technology, Vol. 25, 2007. Pp. 225-229. 11. Madani T., Benallegue A. Dikmen I.C., Arisoy A., Temeltas H. Attitude control of a quadrotor. 4th International Conference on Recent Advances in Space Technologies, 2009. Pp. 722-727. 4. Luukkonen T. Modelling and Control of Quadcopter. School LIPO SAFETY AND MANAGEMENT: Режим доступа:
8 9 10	технологии и железа. 25 июня 2014. Режим доступа: http://www.thg.ru/consumer/obzor_fnv_multiconterov/print html Alderete T.S. "Simulator Aero Model Implementation" NASA Ames Research Center. Moffett Field. California. P. 21. Режим лоступа: Bouadi H., Tadjine M. Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter. World Academy of Science, Engineering and Technology, Vol. 25, 2007. Pp. 225-229. 11. Madani T., Benallegue A. Dikmen I.C., Arisoy A., Temeltas H. Attitude control of a quadrotor. 4th International Conference on Recent Advances in Space Technologies, 2009. Pp. 722-727. 4. Luukkonen T. Modelling and Control of Quadcopter. School LIPO SAFETY AND MANAGEMENT: Режим доступа: http://aerobot.com.au/support/training/lino-safety (Лата обрашения
8 9 10 11 12	технологии и железа. 25 июня 2014. Режим доступа: http://www.thg.ru/consumer/obzor_fnv_multiconterov/print html Alderete T.S. "Simulator Aero Model Implementation" NASA Ames Research Center. Moffett Field. California. P. 21. Режим лоступа: Bouadi H., Tadjine M. Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter. World Academy of Science, Engineering and Technology, Vol. 25, 2007. Pp. 225-229. 11. Madani T., Benallegue A. Dikmen I.C., Arisoy A., Temeltas H. Attitude control of a quadrotor. 4th International Conference on Recent Advances in Space Technologies, 2009. Pp. 722-727. 4. Luukkonen T. Modelling and Control of Quadcopter. School LIPO SAFETY AND MANAGEMENT: Режим доступа: http://aerobot.com.au/support/training/lipo-safety (Лата обращения Murray R.M., Li Z, Sastry S.S. A Mathematical Introduction to Robotic
8 9 10 11 12	технологии и железа. 25 июня 2014. Режим доступа: http://www.tho.mu/consumer/obzor fav multiconterov/print html Alderete T.S. "Simulator Aero Model Implementation" NASA Ames Research Center. Moffett Field. California. P. 21. Режим доступа: Bouadi H., Tadjine M. Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter. World Academy of Science, Engineering and Technology, Vol. 25, 2007. Pp. 225-229. 11. Madani T., Benallegue A. Dikmen I.C., Arisoy A., Temeltas H. Attitude control of a quadrotor. 4th International Conference on Recent Advances in Space Technologies, 2009. Pp. 722-727. 4. Luukkonen T. Modelling and Control of Quadcopter. School LIPO SAFETY AND MANAGEMENT: Режим доступа: http://aerobot.com.au/support/training/lipo-safety (Лата обращения Murray R.M., Li Z, Sastry S.S. A Mathematical Introduction to Robotic Zhao W., Hiong Go T. Quadcopter formation flight control combining MPC

приложение 2

Правила выбора темы проекта

Способы решения проблем начинающими исследователями во многом зависят от выбранной темы. Надо помочь детям найти все пути, ведущие к достижению цели, выделить общепринятые, общеизвестные и нестандартные, альтернативные; сделать выбор, оценив эффективность каждого способа.

Правило 1. Тема должна быть интересна ребенку, должна увлекать его. Исследовательская работа эффективна только на добровольной основе. Тема, навязанная ученику, какой бы важной она ни казалась взрослым, не даст должного эффекта.

Правило 2. Тема должна быть выполнима, решение ее должно быть полезно участникам исследования. Натолкнуть ребенка на ту идею, в которой он максимально реализуется как исследователь, раскроет лучшие стороны своего интеллекта, получит новые полезные знания, умения и навыки, — сложная, но необходимая задача для педагога.

Правило 3. Тема должна быть оригинальной с элементами неожиданности, необычности. Оригинальность следует понимать, как способность нестандартно смотреть на традиционные предметы и явления.

Правило 4. Тема должна быть такой, чтобы работа могла быть выполнена относительно быстро. Способность долго концентрировать собственное внимание на одном объекте, т. е. долговременно, целеустремленно работать в одном направлении, у школьника ограниченна.

Правило 5. Тема должна быть доступной. Она должна соответствовать возрастным особенностям детей. Это касается не только выбора темы исследования, но и формулировки и отбора материала для ее решения. Одна и та же проблема может решаться разными возрастными группами на различных этапах обучения.

Правило 6. Сочетание желаний и возможностей. Выбирая тему, педагог должен учесть наличие требуемых средств и материалов – исследовательской базы. Ее отсутствие, невозможность собрать необходимые данные обычно

приводят к поверхностному решению, порождают "пустословие". Это мешает развитию критического мышления, основанного на доказательном исследовании и надежных знаниях.

Правило 7. С выбором темы не стоит затягивать. Большинство учащихся не имеют постоянных пристрастий, их интересы ситуативны. Поэтому, выбирая тему, действовать следует быстро, пока интерес не угас.

Примерные темы проектов:

- 1. Моделирование квадрокоптера.
- 2. Проектирование полета над трассой с препятствиями.
- 3. Программирование автономного взлета и посадки квадрокоптера.
- 4. Видео нарезка полетов вокруг Кванториума.
- 5. Организация гонки квадрокоптеров.
- 6. Применение квадрокоптеров в Геоквантуме.
- 7. Проектирование квадрокоптера-траспортировщика.
- 8. Автономный полет по заданной траектории.
- 9. Создание помощника для преподавателя на контрольных работах.
- 10. Квадрокоптер лучший друг Робоквантума.

ПРИЛОЖЕНИЕ 3

Пример кейса

Аэросъемка «Для чего на самом деле нужен беспилотный летательный аппарат?»

Описание реальной ситуации (кейса)

Мы работаем в администрации технопарка и нам необходимо набрать красочные и интересные материалы для сайта, чтобы привлечь больше клиентов и компаний. Также многие резиденты технопарка жалуются, что, учитывая большую территорию технопарка, они до сих пор не знают, как он выглядит целиком, отсутствует навигация по территории технопарка. В дополнение необходимо определить точную площадь территории технопарка.

Общие вопросы

- Что такое БПЛА?
- Как устроен и работает БПЛА?
- Какие данные он позволяет получить?
- Чем аэросъёмка с БПЛА отличается от космической съемки?

Термины:

- Аэросъемка
- Носители и полезная нагрузка
- Классификация (маршрутная, линейная) аэросъемки
- Высота, перекрытие, базис, интервал фотографирования
- Фотомозаика
- Ортофотоплан

Материалы:

- Компьютер
- Интернет
- Архивные материалы аэросъемки
- ПО для обработки данных Аэросъемки (Agisoft Photoscan)
- Квадрокоптер
- Фотоаппарат
- Штатив
- Google Maps
- Квадрокоптер с устройством аэрофотосъемки